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Problem 1. (a) No, the error probability of the new MAP rule is not higher
than the equally likely case.
Explanation :
The first case applies this to decide :

Ĥ1 = argmax
i

PY |H(y|i)

The second case applies this to decide :

Ĥ2 = argmax
i

PY |H(y|i)PH(i)

The first case corresponds to the ML rule whereas the second case corresponds to the
MAP rule. But the MAP rule is the one that minimizes the error probability. So it
cannot give a higher error probability than the ML rule.

(b) Yes, L(y) = [L1(y), L2(y), ..., Lm−1(y)]
T is a sufficient statistic.

Explanation :
One can observe that pi(y) = L1(y)L2(y)...Li(y)p0(y) = p0(y)

∏i
j=1 Lj(y) = h(y)gi(L(y)).

By Fisher-Neyman, we can directly conclude that L(y) is a sufficient statistic.

(c) Yes, the information given is sufficient to compute the error probability.
We need the distance between each waveform. Let us call dij the distance between
wi and wj.

d2ij = ∥wi−wj∥2 = ⟨wi−wj, wi−wj⟩ = ⟨wi, wi⟩−2⟨wi, wj⟩+⟨wj, wj⟩ = Aii−2Aij+Ajj

Now that we have how to compute the pairwise distances between waveforms, we
can compute the error probability using it. In fact, the exact MAP rule can be
implemented by just knowing the matrix A.

(d) Yes, ψ is a Nyquist pulse with parameter 2T.
Explanation :∑

n

|ψF

(
f − n

2T

)
|2 =

∑
k

|ψF

(
f − 2k

2T

)
|2 +

∑
k

|ψF

(
f − 2k + 1

2T

)
|2

=
∑
k

|ψF

(
f − k

T

)
|2 +

∑
k

|ψF

(
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T
− 1

2T

)
|2

Now, we can set f ′ = f − 1
2T

and continue :

∑
n

|ψF

(
f − n

2T

)
|2 =

∑
k

|ψF

(
f − k

T

)
|2 +

∑
k

|ψF

(
f ′ − k

T

)
|2 = T + T = 2T



One can also observe that

⟨ψ(·−nT ), ψ(·−mT )⟩ = δmn ∀m,n ∈ Z =⇒ ⟨ψ(·− i2T ), ψ(·−k2T )⟩ = δik ∀i, k ∈ Z

by choosing n = 2i and m = 2k for some i, k ∈ Z. This means that ψ is orthogonal to
its 2T -translates, which equivalently means that it is a Nyquist pulse with parameter
2T .

Problem 2. (a) We have the following set-up :

Under H = i : Y = ci + Z where ci = (−1)i[A, . . . , A] and Z ∼ N
(
0,
N0

2
In

)

Let d be the distance between c1 and c0. We need it to find where the decision
boundary between the two point will be placed.

d = ∥c0 − c1∥ =
√
4A2 × n = 2A

√
n

Now that we have the distance between the two points and knowing that the messages
are equally likely, we can compute Pe as :

Pe = Pr

(
Z >

d

2

)
= Q

(
2A

√
n√

2N0

)
= Q

(
A

√
2n

N0

)
(b) Let us express the error probability in terms of the new variables N ′

0 and A′.

d = ∥c0 − c1∥ =
√
4A′2 × n = 2A′√n

Pe,new = Pr

(
Z >

d

2

)
= Q

(
2A′√n√

2N ′
0

)
= Q

(
A′
√

2n

4N0

)
= Q

(
A′
√

n

2N0

)
To make the error probability unchanged, we need

A′
√

n

2N0

= A

√
2n

N0

⇒ A′ = 2A

Thus, A′ = 2A makes the error probability unchanged.

(c) Same reasoning as in the previous question. This time, we need :

A

√
n′

2N0

= A

√
2n

N0

⇒ n′ = 4n

Thus, n′ = 4n makes the error probability unchanged

(d) In question a) we found : Pe = Q
(
A
√

2n
N0

)
≈ exp

(
−A2n

N0

)
.

Now, as N0 has changed to N0/4, we have as a new error probability :

P̃e = Q

(
A

√
8n

N0

)
≈ exp

(
−4A2n

N0

)
≈ P 4

e

2



Problem 3. (a) Block 1 : Computes Yj = ⟨rE, ψ(t − j)⟩ using a matched filter with
h(t) = ψ(−t) sampled at t = 0, 1, . . .
Block 2 : Yj = Xj + ⟨NE, ψ(t− j)⟩ = Xj + ZR + jZI where ZR = ⟨NR, ψ(t− j)⟩ and
ZI = ⟨NI , ψ(t − j)⟩ are N

(
0, N0

2

)
i.i.d. Let YR be the real part of Yj and YI be the

imaginary part. Then, the decision regions are given on the complex plane by the
following, where c1 = +

√
Es, c2 = j

√
Es, c3 = −

√
Es, c4 = −j

√
Es :

YR

YI

R1

R2

R3

R4

c1

c2

c3

c4

The decision X̂j is ci if Yj lies in Ri.

(b) For any of the 4 points, its distance to each of the two boundaries is
√
Es sin

(
θ − π

4

)
and

√
Es cos

(
θ − π

4

)
. Let us say that the noise added is Z = (Z1, Z2), where Z1 is

the direction parallel to one boundary and Z2 to the other. If ci is sent, to make the
right guess, Z1 should be greater than −

√
Es sin(π4 − θ), otherwise it will make you

outside of the right decision region, and Z2 should be greater than −
√
Es cos(π4 − θ)

otherwise it will also make you outside of the right decision region. This is the same
as :

Pr(error) = 1− Pr(correct)

= 1− Pr
(
Z1 > −

√
Es sin

(π
4
− θ
))

P
(
Z2 > −

√
Es cos

(π
4
− θ
))

= 1−

(
1−Q

(√
Es sin

(
π
4
− θ
)

σ

))(
1−Q

(√
Es cos

(
π
4
− θ
)

σ

))

= Q

(√
Es sin(π4 − θ)

σ

)
+Q

(√
Es cos(π4 − θ)

σ

)

−Q

(√
Es sin

(
π
4
− θ
)

σ

)
Q

(√
Es cos

(
π
4
− θ
)

σ

)

(c) What would happen is that, even when there is no noise, the point is not even in
its right decision region. So even with no noise, the decoder decodes incorrectly. In
fact, this system (with noise) performs even worse than a random guess with error
probability 3/4 (since there is a large probability that it ends up in a different region).

(d) Here, as T = 1, the minimum value for B is B = 1
2
, since otherwise, the Nyquist

criterion for orthonormality would be violated.
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With ψ(0) = 1, the corresponding pulse shape is ψ(t) = sinc(t). (Any other pulse
shape would lead to a larger bandwidth than 1/2.)

Problem 4. We have the following setup : Under H = i, Y = ci+Z where ci ∈ {+1,−1}n

and Z ∈ Rn with i.i.d components whose pdf is fZi
(zi) =

1
2σ

exp
(

−|zi|
σ

)
.

(a) Applying the ML rule (because equivalent to the MAP rule, as the messages are
equally likely) we have :

ĤML = argmax
i

fY |H(y|i)

= argmax
i

fZ(y − ci)

= argmax
i

n∏
j=1

exp
(

−|yj−ci,j |
σ

)
2σ

= argmin
i

n∑
j=1

|yj − ci,j|

(b) Let us rewrite the rule found in a) using the additional information given in this
question.

ĤML = argmin
i

n∑
j=1

|yj − ci,j|

= argmin
i

n∑
j=1

|yj|+ |ci,j| − 2min(|yj|, |ci,j|)1(yjci,j > 0)

= argmin
i

n∑
j=1

1− 2min(|yj|, |ci,j|)1(yjci,j > 0)

= argmax
i

n∑
j=1

2min(|yj|, |ci,j|)1(yjci,j > 0)

= argmax
i

n∑
j=1

min(|yj|, 1)1(yjci,j > 0)
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(c) We can compute:

Pr(error|i) ≤
∑
j ̸=i

√
PrH(j)

PrH(i)

∫
Rn

√
fY |H(y|i)fY |H(y|j)dy

=
∑
j ̸=i

∫
Rn

√
1

(2σ)n
e−

∥y−ci∥1
σ

1

(2σ)n
e−

∥y−cj∥1
σ dy

=
∑
j ̸=i

1

(2σ)n

∫
Rn

√
e−

1
σ
(∥y−ci∥1+∥y−cj∥1)dy

=
∑
j ̸=i

1

(2σ)n

∫
Rn

√
e−

1
σ

∑n
k=1 |yk−ci,k|+|yk−cj,k|dy

=
∑
j ̸=i

n∏
k=1

1

(2σ)n

∫
R
e−

1
2σ

|yk−ci,k|+|yk−cj,k|dyk

If ci,k = cj,k then 1
2σ

∫
R e

− 1
2σ

|yk−ci,k|+|yk−cj,k|dyk =
1
2σ

∫
R e

− 1
σ
|yk−ci,k|dyk = 1 because it is

the integral over R of a probability density. Therefore, the elements that are different
from 1 in the product are those where ci,k ̸= cj,k and as one is necessarily +1 and the
other -1, the non-zero elements in the product are of the form :

1

2σ

∫
R
e−

1
2σ

|yk+1|+|yk−1|dyk = g(σ)

And there are dH(ci, cj) of them, that corresponds to the number of places where ci
and cj differ. Consequently :

Pr(error|i) ≤
∑
j ̸=i

g(σ)dH(ci,cj)

(d) The detour flow graph is the following :

1 −1 1
ID2 D

ID

(e) Using what we have found in question a), the branch metric that should be used by
the Viterbi decoder is the following : d(xi, yi) = −|yi − xi|. With this metric, the
Viterbi decoder should use the path with biggest value.

(f) Let us define the transfer function T1(I,D) at state (−1). We have the following
system :{

ID2 + IDT1 = T1

DT1 = T (I,D)
⇒

{
T1 =

ID2

1−ID

DT1 = T (I,D)
⇒ DT1 =

ID3

1− ID
= T (I,D)
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Let us now get the derivative of T (I,D) in terms of I, at I = 1 and D = z where
z =

∑m−1
i=0

∑
l ̸=i g(σ)

dH(ci,cl) is the Bhattacharyya bound :

∂T (I,D)

∂I

∣∣∣∣
I=1,D=z

=
ID3

1− ID

∣∣∣∣
I=1,D=z

=
z3(1− z) + z4

(1− z)2
=

z3

(1− z)2

Now we can upper bound the error probability by our result :

Pe ≤
z3

(1− z)2
where z =

m−1∑
i=0

∑
l ̸=i

g(σ)dH(ci,cl)

6


